CURUPIRA-1, a block cipher for constrained platforms - extended version

Paulo S. L. M. Barreto¹, Marcos A. Simplício Jr.¹

¹ Departamento de Engenharia de Computação e Sistemas Digitais (PCS), Escola Politécnica, Universidade de São Paulo, Brazil.

pbarreto@larc.usp.br, marcos.simplicio@poli.usp.br

Abstract. We present CURUPIRA-1, a special-purpose block cipher tailored for platforms where power consumption and processing time are very constrained resources, like sensor and mobile networks or systems heavily dependent on tokens or smart cards. CURUPIRA-1 is an instance of the Wide Trail family of algorithms which includes the AES cipher, and displays both involutional structure, in the sense that the encryption and decryption modes differ only in the key schedule, and cyclic key schedule, whereby the round subkeys can be computed in-place in any order.

1. Introduction

Battery-powered sensor networks impose several constraints on the cryptographic algorithms that can be effectively deployed for such systems. Processing speed is typically low compared to general processors to save batteries; complex all-purpose algorithms will not only take longer to run but also consume more energy. On the other hand, messages exchanged between sensors and central servers or among the sensors themselves are usually small, a typical packet being 24 bytes in length [Müller et al. 2007]. Ad-hoc networks involving mobile equipment (and often tokens and smart cards as well) also impose restrictions on code size and bandwidth occupation.

The TinySec [Karlof et al. 2004] link layer architecture was designed to provide security for sensor networks and is gaining wide acceptance in this role. TinySec relies on a block cipher to achieve its goals regarding access control, message integrity, and confidentiality adopting the Skipjack [NSA 1998] cipher by default. Several alternatives have been analyzed by [Law et al. 2006], confirming that Skipjack is the most energy-efficient of all surveyed ciphers and recommending that MISTY1 [Matsui 1997] or the Advanced Encryption Standard (AES) [NIST 2001] might used in scenarios with higher security requirements. However, Skipjack uses relatively small (80-bit) keys and has a very low margin of security [Biham et al. 1999]; MISTY1 is encumbered by patents, and the AES has larger code, memory, and energy consumption requirements.

In this paper we address these issues by presenting the special-purpose block cipher CURUPIRA-1. It operates on a 96-bit data block and accepts keys of size 96, 144, or 192 bits, with a variable number of rounds. The cipher design follows the Wide Trail strategy [Daemen 1995]. The most well-known member of the Wide Trail family of ciphers is the AES itself. CURUPIRA-1 offers a variety of implementation trade-offs according to the resources available on the target platform. In face of the constrained environment to which it is targeted, CURUPIRA-1 was designed to exhibit involutional structure and cyclic key schedule.
Involutional structure is found in many cipher designs. All classical Feistel networks [Feistel 1973] have this property, as do some more general block ciphers like Skipjack and MISTY1 (but not the AES). Involutional ciphers similar to Curupira-1 were described and analyzed in [Barreto and Rijmen 2000a, Barreto and Rijmen 2000b, Daemen et al. 2000, Youssef et al. 1996, Youssef et al. 1997]. The importance of involutional structure resides in the equivalent security of both encryption and decryption and in the advantages for implementation (the latter being critical in the case of TinySec, due to its adoption of CBC mode, which needs both decryption and decryption functions). The usual way to make a cipher of the Wide Trail family involutional is by including matrix transposition (restricting the block size to perfect squares) or multiplication by a large unitary matrix (incurred large overheads) as components in the round function; the solution adopted in Curupira-1 is novel (see section 3.2.), and avoids those drawbacks. Curupira-1 is closely related to BKSQ [Daemen and Rijmen 1998] (another member of the Wide Trail family), designed with smart cards in mind but lacking involutional structure.

The key schedule adopted by a block cipher is called cyclic or periodic if (1) it iterates some function on the cipher key to derive the round subkeys, and (2) that function becomes the identity after a certain number of iterations. It is important to notice that, with this setting, the subkeys need not be computed incrementally: they can be computed backwards as often needed by the decryption process, or in a random order, or even all in parallel, a useful feature if the cipher is implemented in dedicated hardware, for instance to be deployed on servers. They can also be computed in-place, contrary to schemes where all subkeys must be precomputed and stored in a large table.

As is de rigueur for any encryption algorithm proposal, we focus our attention on a detailed security analysis, without losing sight of actual implementation issues.

This document is organized as follows. We introduce basic mathematical tools in section 2. The Curupira-1 cipher is described in section 3. Security issues of the resulting design are discussed in section 4. Implementation techniques together with efficiency considerations and comparisons are presented in section 5. We conclude in section 6.

2. Mathematical preliminaries and notation

2.1. Finite fields

The finite field GF(2^8) will be represented as GF(2)[x]/p(x), where p(x) = x^8 + x^6 + x^3 + x^2 + 1 is the only primitive pentanomial of degree 8 over GF(2) for which a primitive cube root of unity is represented as a quartic trinomial (namely, \( c(x) = x^{85} \mod p(x) = x^4 + x^3 + x^2 \)), which is the simplest form achievable. Since multiplications by the generator \( g(x) = x \) of GF^*(2^8) and by \( c(x) \) both occur in the algorithm, it is important that \( c(x) \) be as simple as possible for efficiency reasons.

An element \( u = u_7 x^7 + u_6 x^6 + u_5 x^5 + u_4 x^4 + u_3 x^3 + u_2 x^2 + u_1 x + u_0 \) of GF(2^8) where \( u_i \in GF(2) \) for all \( i = 0, \ldots, 7 \) will be denoted by the numerical value \( u_7 \cdot 2^7 + u_6 \cdot 2^6 + u_5 \cdot 2^5 + u_4 \cdot 2^4 + u_3 \cdot 2^3 + u_2 \cdot 2^2 + u_1 \cdot 2 + u_0 \), written in hexadecimal notation. For instance, the polynomial \( c(x) = x^4 + x^3 + x^2 \) is written 1C; by extension, the reduction polynomial \( p(x) \) is written 14D.
2.2. MDS codes

We provide some relevant definitions regarding the theory of linear codes. For a more extensive exposition on the subject we refer to [MacWilliams and Sloane 1977].

The Hamming distance between two vectors \( u \) and \( v \) from the \( n \)-dimensional vector space \( \text{GF}(2^p)^n \) is the number of coordinates where \( u \) and \( v \) differ. The Hamming weight \( w_h(a) \) of an element \( a \in \text{GF}(2^p)^n \) is the Hamming distance between \( a \) and the null vector of \( \text{GF}(2^p)^n \), i.e. the number of nonzero components of \( a \).

A linear \([n, k, d]\) code over \( \text{GF}(2^p) \) is a \( k \)-dimensional subspace of the vector space \( \text{GF}(2^p)^n \), where the Hamming distance between any two distinct subspace vectors is at least \( d \leq n - k + 1 \) (and \( d \) is the largest number with this property). When \( d = k/2 \), for example, we have that any two distinct vectors in this code differ in at least half of their components. This way, the greater the value of \( d \), the greater the difference between any two vectors. A Maximal Distance Separable (MDS) code is a linear code for which \( d = n - k + 1 \).

A generator matrix \( G \) for a linear \([n, k, d]\) code \( C \) is a \( k \times n \) matrix whose rows form a basis for \( C \). A generator matrix is in echelon or standard form if it has the form \( G = [I_{k \times k} A_{k \times (n-k)}] \), where \( I_{k \times k} \) is the identity matrix of order \( k \). In other words, a generator matrix is the one obtained by concatenating the identity matrix \( I_{k \times k} \) with a matrix \( A_{k \times (n-k)} \). We write simply \( G = [IA] \) omitting the indexes wherever the matrix dimensions are irrelevant for the discussion, or clear from the context.

A linear \([n, k, d]\) code \( C \) with generator matrix \( G = [I_{k \times k} A_{k \times (n-k)}] \) is MDS if, and only if, every square submatrix formed from rows and columns of \( A \) is nonsingular (cf. [MacWilliams and Sloane 1977, chapter 11, § 4, theorem 8]). Matrix \( A \) is then denominated an MDS matrix. Figure 1 illustrates the way one can construct such a code.

![Figure 1. Construction of an MDS code, explicitly showing the generator matrix](image)

2.3. Matrices over GF(2^m)

The set of all \( 3 \times n \) matrices over \( \text{GF}(2^m) \) is denoted by \( \mathbb{M}_{3,n} \), with \( O \) and \( I \) standing for the zero and identity matrices, respectively.
Consider the following matrices:

\[
A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}.
\]

A straightforward inspection reveals that \( A \) and \( B \) are nilpotent and \( C \) is idempotent over \( \text{GF}(2^n) \) (\( A^2 = B^2 = O, \ C^2 = C \)), and also that \( AB = BA = O \).

As a consequence, all matrices of form \( D = I + aA + bB \) are involutions, i.e. \( D^2 = I, \ \forall a, b \in \text{GF}(2^n) \). One can show by direct enumeration that the determinants of all square submatrices formed from rows and columns of \( D \) take one of the forms \( \{a, a+1, b, b+1, a+b, a+b+1\} \), so that \( D \) is MDS iff \( a \neq 0, 1, b \neq 0, 1, \) and \( b \neq a, a+1 \). The simplest such matrix to display the MDS property is thus \( D = I + 2A + 4B \).

Furthermore, a simple calculation shows that a matrix of form \( E = I + cC \) is invertible iff \( c \neq 1 \), in which case \( E^{-1} = I + \left(\frac{c}{c+1}\right) C \). The determinants of all square submatrices formed from rows and columns of \( E \) take one of the forms \( \{1, c, c+1\} \), so that \( E \) is MDS iff \( c \neq 0, 1 \). If \( c \) is a primitive cube root of unity, we have \( c^3 = 1 \) and also \( c^2 + c + 1 = 0 \) (since \( c^3 + 1 = (c+1)(c^2 + c + 1) \) and \( c \neq 1 \)). Then we can write \( c/(c+1) = c^2 = c + 1 \), and \( E^{-1} \) assumes a particularly simple form, namely, \( E^{-1} = I + (c+1)C \).

Matrices \( D \) and \( E \) play important roles in Curupira-1 (see sections 3.3. and 3.7.). Appendix B gives some additional details on the way these matrices were obtained, as well as the design requirements involved in the process.

### 2.4. Cryptographic properties

A product of \( m \) distinct Boolean variables is called an \( m \)-th order product of the variables. Every Boolean function \( f : \text{GF}(2)^n \to \text{GF}(2) \) can be written as a sum over \( \text{GF}(2) \) of distinct \( m \)-order products of its arguments, \( 0 \leq m \leq n \); this is called the algebraic normal form of \( f \). The nonlinear order of \( f \), denoted \( \nu(f) \), is the maximum order of the terms appearing in its algebraic normal form.

A linear Boolean function is a Boolean function of nonlinear order 1, i.e. its algebraic normal form only involves isolated arguments. Given a selection vector \( \alpha \in \text{GF}(2)^n \), we denote by \( \ell_\alpha(x) : \text{GF}(2)^n \to \text{GF}(2) \) its parity, i.e. the linear Boolean function consisting of the sum (XOR) of the argument bits selected by the bits of \( \alpha \):

\[
\ell_\alpha(x) = \bigoplus_{i=0}^{n-1} \alpha_i \cdot x_i.
\]

A mapping \( S : \text{GF}(2^n) \to \text{GF}(2^n), \ x \mapsto S[x] \), is called a substitution box, or S-box for short. An S-box can also be viewed as a mapping \( S : \text{GF}(2)^n \to \text{GF}(2)^n \) and therefore described in terms of its component Boolean functions \( s_i : \text{GF}(2)^n \to \text{GF}(2), 0 \leq i \leq n-1 \), i.e. \( S[x] = (s_0(x), \ldots, s_{n-1}(x)) \).

The nonlinear order of an S-box \( S \), denoted \( \nu_S \), is the minimum nonlinear order over all linear combinations of the components of \( S \). This way, \( \nu_S \) measures how difficult
the S-Box can be represented as a linear function of its arguments, and it is given by:
\[ v_S = \min_{\alpha \in \text{GF}(2^n)} \{ v(\ell \circ S) \}. \]

The difference table of an S-box \( S \), constructed from the relationship between the differences in its input and output (see figure), is defined as
\[ e_S(a, b) = \# \{ c \in \text{GF}(2^n) \mid S[c \oplus a] \oplus S[c] = b \}. \]

The \( \delta \)-parameter of an S-box \( S \), which gives the maximum probability of a differential in table \( e_S \), is defined as
\[ \delta_S = 2^{-n} \cdot \max_{a \neq 0, b} e_S(a, b). \]

The product \( \delta_S \cdot 2^n \) is called the differential uniformity of \( S \) and measures the number of pairs leading to a maximum probability differential.

The correlation \( c(f, g) \) between two Boolean functions \( f \) and \( g \) can be calculated as follows:
\[ c(f, g) = 2^{1-n} \cdot \# \{ x \mid f(x) = g(x) \} - 1. \]

The \( \lambda \)-parameter of an S-box \( S \) is defined as the maximal value for the correlation between linear functions of input bits and linear functions of output bits of \( S \):
\[ \lambda_S = \max_{(i,j) \neq (0,0)} c(\ell_i \circ \ell_j \circ S). \]

The branch number \( B \) of a linear mapping \( \theta : \text{GF}(2^n) \to \text{GF}(2^n) \) is defined as
\[ B(\theta) = \min_{a \neq 0} \{ w_h(a) + w_h(\theta(a)) \}. \]

2.5. Miscellaneous notation
Given a sequence of functions \( f_m, f_{m+1}, \ldots, f_{n-1}, f_n \), \( m \leq n \), we adopt the notation
\[ \bigcirc_{r=m}^n f_r \equiv f_n \circ f_{n-1} \circ \cdots \circ f_{m+1} \circ f_m \]
and
\[ \bigcirc_{r=n}^m f_r \equiv f_m \circ f_{m+1} \circ \cdots \circ f_{n-1} \circ f_n. \]
If \( m > n \), both expressions stand for the identity mapping.

3. Description of the CURUPIRA primitive
The CURUPIRA-1 cipher is an iterated block cipher that operates on a 96-bit cipher state organized as a matrix in \( \mathbb{M}_4 \). It uses a 48\( t \)-bit (\( 2 \leq t \leq 4 \)) cipher key organized as a matrix in \( \mathbb{M}_{2^t} \). The cipher key \( K \) undergoes an in-place key evolution process, whereby a linear transform \( \omega \) and a suitable schedule constant are repeatedly applied to produce key stages from which the round subkeys are computed. After a number of key evolution steps the key stage only differs from the original cipher key by a constant; an extra addition of this constant entirely recovers \( K \) and resets the cipher for the next operation. In the following we will individually define the component mappings and constants that build up CURUPIRA-1, then specify the complete cipher, illustrated in Figure 2 in terms of these components.
3.1. The nonlinear layer $\gamma$

Function $\gamma : \mathbb{M}_n \rightarrow \mathbb{M}_n$ consists of the parallel application of a nonlinear S-box $S : \text{GF}(2^8) \rightarrow \text{GF}(2^8)$ to all bytes of the argument individually:

$$\gamma(a) = b \iff b_{i,j} = S[a_{i,j}], \quad 0 \leq i < 3, \quad 0 \leq j < n.$$  

The Curupira-1 S-box is the same one defined for the Anubis and Khazad ciphers [Barreto and Rijmen 2000a, Barreto and Rijmen 2000b], designed to display $\delta_S = 2^{-5}$, $\lambda_S = 2^{-2}$, and $\nu_S = 7$ and hence to thwart differential, linear, and interpolation attacks. It was also constructed so that $S[S[x]] = x, \forall x \in \text{GF}(2^8)$. Therefore, $\gamma$ is an involution.

The actual S-box can be computed on demand with algorithm 1 (which is also depicted in Figure 5) from two mini-boxes (see table 1) that fit in just 16 bytes. Alternatively and more commonly, if space is available it can be precomputed (either at compilation time or at system startup) and stored in 256 bytes.

**Algorithm 1** Computing $S[u]$ from the mini-boxes $P$ and $Q$

\begin{verbatim}
1: $u_0 \leftarrow P[u \gg 4] \& F$, $u_1 \leftarrow Q[u \& F]
2: u'_0 \leftarrow Q(u_0 \oplus (u_1 \gg 2) \& 3), u'_1 \leftarrow P(u'_0 \ll 2) \& C)
3: u_0 \leftarrow P(u'_0 \& C) \oplus ((u_1 \gg 2) \& 3), u_1 \leftarrow Q(u'_1 \& C) \oplus (u'_1 \& 3)
4: return $(u_0 \ll 4) \oplus u_1$
\end{verbatim}
3.2. The permutation layer $\pi$
Permutation $\pi : \mathbb{M}_n \rightarrow \mathbb{M}_n$ swaps each columns of its argument according to the rule:

$$\pi(a) = b \iff b_{i,j} = a_{i,\oplus_j}, \quad 0 \leq i < 3, \quad 0 \leq j < n.$$ 

It’s easy to see that $\pi$ is an involution.

3.3. The linear diffusion layer $\theta$
The diffusion layer $\theta : \mathbb{M}_n \rightarrow \mathbb{M}_n$ is a linear mapping based on the $[6, 3, 4]$ MDS code with generator matrix $G_D = [I \ D]$ where $D = I + 2A + 4B$, i.e.

$$D = \begin{bmatrix} 3 & 2 & 2 \\ 4 & 5 & 4 \\ 6 & 6 & 7 \end{bmatrix},$$

so that

$$\theta(a) = b \iff b = D \cdot a.$$ 

Since $D$ is self-inverse, $\theta$ is an involution.

Circulant matrices [Daemen et al. 1997, NIST 2001] are not suitable for the diffusion layer because no circulant matrix can be involutional. Cauchy matrices [Youssef et al. 1996, Youssef et al. 1997] might have been an option, but the resulting coefficients are in general very complex, impairing efficient implementation. The actual choice above involves the simplest possible coefficients, in the sense of minimum polynomial degree and minimum Hamming weight.

3.4. The key addition $\sigma[k]$
The affine key addition $\sigma[k] : \mathbb{M}_n \rightarrow \mathbb{M}_n$ consists of the bitwise addition of a key matrix $k \in \mathbb{M}_n$, i.e.

$$\sigma[k](a) = b \iff b_{i,j} = a_{i,j} \oplus k_{i,j}, \quad 0 \leq i < 3, \quad 0 \leq j < n.$$ 

This mapping is also used to introduce schedule constants in the key schedule. The key addition so defined is obviously an involution.

3.5. Key representation
A 48$t$-bit user key $\mathcal{K}$, $2 \leq t \leq 4$, externally stored as a byte array of length $6t$, is internally represented as a matrix $K \in \mathbb{M}_{2t}$, such that

$$K_{i,j} = \mathcal{K}[i + 3j], \quad 0 \leq i < 3, \quad 0 \leq j < 2t.$$ 

In other words, the user key is mapped to the cipher key by columns (not by rows).

3.6. Schedule constants
The schedule constants $q^{(s)}$ are constant matrices defined as $q^{(0)} = 0$ and, for $s > 0$ and $0 \leq j < 2t$,

$$q^{(s)}_{i,j} = \begin{cases} S[2t(s - 1) + j], & \text{if } i = 0, \\ 0, & \text{otherwise.} \end{cases}$$

Good schedule constants should not be equal for all bytes in a state, and also not equal for all bit positions in a byte. They should also be different in each round. The actual choice meets these constraints. Taking values from the S-box itself avoids the need for any extra storage. In fact, exactly $t$ S-box entries are used per round.
3.7. The key evolution $\psi_s$

As depicted in Figure 3, the cipher key is updated during the cipher operation by a reversible transform defined by two linear operations as follows.

![Figure 3. The Curupira-1 key schedule](image)

Let $\xi : \mathbb{M}_{2t} \rightarrow \mathbb{M}_{2t}$ be the linear transform such that $\xi(a) = b \iff \begin{cases} b_{0,j} = a_{0,j}, \\ b_{1,j} = a_{1,(j+1) \mod 2t}, \\ b_{2,j} = a_{2,(j-1) \mod 2t}, \end{cases}$ i.e. keeps the first row of its argument unchanged, rotates the second row one position to the left, and rotates the third row one position to the right.

Let $\mu : \mathbb{M}_n \rightarrow \mathbb{M}_n$ be the linear transform such that $\mu(a) = E \cdot a$, $E = I + cC$, $c$ being the primitive cube root of the unity $c(x) = x^4 + x^3 + x^2 \in \text{GF}(2^8)$. Its inverse is $\mu^{-1}(a) = E^{-1} \cdot a$ where $E^{-1} = I + (c + 1)C$.

Define $\omega \equiv \mu \circ \xi$, and let $\omega^m$ denote the composition of $\omega$ with itself $m$ times. Let $a \in \mathbb{M}_{2t}$. By direct inspection one can verify that the period of $\omega$ over $\mathbb{M}_{2t}$ is $m = 6t$ for $2 \leq t \leq 4$. In other words, $m = 6t$ is the smallest positive integer such that $\omega^m(a) = a$, $\forall a \in \mathbb{M}_{2t}$. The idea is to compute $\omega^m$ on a basis of $\mathbb{M}_{2t}$, e.g. $\{e^{(k)} \mid e^{(k)}_j = \delta_{k} \delta_{j} \}$, and verifying that $\omega^m(e^{(k)}) \neq e^{(k)}$ for $1 \leq m < 6t$ but $\omega^m(e^{(k)}) = e^{(k)}$ for $m = 6t$.

Define the accumulated schedule constant $Q^{(r)} = \sum_{i=0}^{r} \omega^{r-i+1}(q^{(i)})$. Let $K \in \mathbb{M}_n$ be the cipher key, and let the initial key stage to be $K^{(0)} \equiv K$. The key evolution function $\psi_r : \mathbb{M}_n \rightarrow \mathbb{M}_n$ computes key stage $K^{(r)}$ from key stage $K^{(r-1)}$. It is defined as $\psi_r \equiv \omega \circ \sigma[q^{(r)}]$, i.e.

$$K^{(r)} = \psi_r(K^{(r-1)}) = \left( \bigotimes_{i=1}^{r} \omega \circ \sigma[q^{(i)}] \right)(K) = \omega'(K) + Q^{(r)}.$$
The key schedule derives subkeys from key stages $K^{(0)}$ through $K^{(m-1)}$. It is clear that an extra application of $\omega$ and subsequent addition of $Q^{(m-1)}$ recovers the original cipher key, i.e. $K = \omega(K^{(m-1)}) + Q^{(m-1)}$. Only $Q^{(m-1)}$ needs to be stored for sequential processing; in all scheduling steps but this finalization the simpler constants $q^{(r)}$ can be used. This cyclic schedule behavior resets the cipher; therefore, the key evolution process can be conducted in-place; no extra storage is needed for the key stages, which can always be computed on-the-fly at low computational cost.

### 3.8. The key selection $\phi_r$

The effective round subkeys $\kappa^{(r)}$ needed by the cipher are computed (either directly from the cipher key $K$ or indirectly from key stage $K^{(r)}$) via the key selection function, $\phi_r : \mathbb{M}_n \rightarrow \mathbb{M}_n$, defined so that:

$$
\kappa^{(r)} = \phi_r(K) \Leftrightarrow \kappa^{(r)}_{0,j} = S[K^{(r)}_{0,j}] \text{ and } \kappa^{(r)}_{i,j} = K^{(r)}_{i,j} \text{ for } i > 0, \ 0 \leq j < 4.
$$

The key selection function introduces nonlinearity in the key schedule, ensuring 8 applications of the S-box between any two rounds subkeys and $4(R+1)$ applications of the S-box for the whole key schedule, where $R$ is the number of rounds.

### 3.9. The complete cipher

CURUPIRA-1 is defined for the cipher key $K \in \mathbb{M}_n$ and $R$ rounds as the mapping $\text{CURUPIRA} - 1[K] : \mathbb{M}_4 \rightarrow \mathbb{M}_4$ given by

$$
\text{CURUPIRA}[K] \equiv \sigma[\kappa^{(R)}] \circ \pi \circ \gamma \circ \bigg( \bigcup_{r=1}^{R-1} \sigma[\kappa^{(r)}] \circ \theta \circ \pi \circ \gamma \bigg) \circ \sigma[\kappa^{(0)}].
$$

The initial key addition $\sigma[\kappa^{(0)}]$ is called whitening. The composite mapping $\rho[\kappa^{(r)}] \equiv \sigma[\kappa^{(r)}] \circ \theta \circ \pi \circ \gamma$ is called the round function for the $r$-th round; by convenience, the related mapping $\rho'[\kappa^{(R)}] \equiv \sigma[\kappa^{(R)}] \circ \pi \circ \gamma$ is called the last round function, although it is not the same as the round function.

An $R$-round iterated cipher needs $R+1$ subkeys. The key evolution has period $m = 6t$, the number of rounds is at most $6t - 1$. The actual number of rounds is variable: for 48$t$-bit keys, it is any value in range $4t + 2 \leq R \leq 6t - 1$ (see table 2). The minimum number of rounds was chosen to match the security level of BKSQ [Daemen and Rijmen 1998]. The cyclic property of the key schedule is only fully available (in the sense of automatically resetting the cipher after each encryption) with the maximum number of rounds for each key size, but the round subkeys can always be computed independently in any desired order.

<table>
<thead>
<tr>
<th>key size (bits)</th>
<th>min # rounds</th>
<th>max # rounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>144</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>192</td>
<td>18</td>
<td>23</td>
</tr>
</tbody>
</table>
3.10. The inverse cipher

We now show that Curupira-1 is an involutional cipher, in the sense that the only difference between the cipher and its inverse is in the key schedule.

**Theorem 1.** Let \(\alpha[k^{(0)}, \ldots, k^{(R)}]\) stand for Curupira-1 encryption under the sequence of round keys \(k^{(0)}, \ldots, k^{(R)}\), and let the decryption keys be defined as \(\bar{k}^{(0)} \equiv k^{(R)}, \bar{k}^{(R)} \equiv k^{(0)},\) and \(\bar{k}^{(r)} \equiv \theta(k^{(R-r)})\) for \(0 < r < R\). Then \(\alpha^{-1}[k^{(0)}, \ldots, k^{(R)}] = \alpha[\bar{k}^{(0)}, \ldots, \bar{k}^{(R)}]\).

**Proof.** We start from the definition of \(\alpha[k^{(0)}, \ldots, k^{(R)}]\):

\[
\alpha[k^{(0)}, \ldots, k^{(R)}] = \sigma[k^{(R)}] \circ \pi \circ \gamma \circ \left( \bigcirc_{r=1}^{R-1} \sigma[k^{(r)}] \circ \theta \circ \pi \circ \gamma \right) \circ \sigma[k^{(0)}].
\]

Since the component functions are involutions, the inverse transform is obtained by applying them in reverse order. However, we notice that \(\gamma \circ \pi = \pi \circ \gamma\), since \(\pi\) moves but does not mix elements of its argument while \(\gamma\) only affects individual elements, independently of their coordinates. Besides, \(\theta \circ \sigma[k^{(r)}] = \sigma[\theta(k^{(r)})] \circ \theta\), since \((\theta \circ \sigma[k^{(r)}])(a) = \theta(k^{(r)} + a) = \theta(a) = \sigma[\theta(k^{(r)})] \circ \theta(a)\), for any input \(a\). Therefore we can write:

\[
\alpha^{-1}[k^{(0)}, \ldots, k^{(R)}] = \sigma[k^{(0)}] \circ \left( \bigcirc_{r=1}^{R-1} \pi \circ \gamma \circ \sigma[\theta(k^{(r)})] \circ \theta \right) \circ \pi \circ \gamma \circ \sigma[k^{(R)}].
\]

Substituting \(k^{(r)}\) in the above equation and slightly changing the grouping of operations we arrive at the desired result:

\[
\alpha^{-1}[k^{(0)}, \ldots, k^{(R)}] = \sigma[\bar{k}^{(R)}] \circ \pi \circ \gamma \circ \left( \bigcirc_{r=1}^{R-1} \sigma[\bar{k}^{(r)}] \circ \theta \circ \pi \circ \gamma \right) \circ \sigma[\bar{k}^{(0)}] = \alpha[\bar{k}^{(0)}, \ldots, \bar{k}^{(R)}].
\]

\(\Box\)

Figure 4 illustrates this important involutional behavior of Curupira-1.

Figure 4 illustrates this important involutional behavior of Curupira-1.

4. Analysis

For all allowed key lengths, the security goals are that Curupira-1 is \(K\)-secure and hermetic in the sense of [Daemen 1995]. We now present the results of our security analysis.
4.1. Differential and linear cryptanalysis

One can show [Daemen and Rijmen 1998, section 3.1] that every four-round differential characteristic or linear approximation has at least 16 active S-boxes. As a consequence, no four-round differential characteristic has probability larger than $\delta^{16} = (2^{-5})^{16} = 2^{-80}$, and no four-round linear approximation has input-output correlation larger than $\lambda^{16} = (13 \times 2^{-6})^{16} \approx 2^{-36.8}$. This makes classical differential or linear attacks, which need characteristics with probability larger than $2^{-95}$ or input-output correlations larger than $2^{-48}$ over all rounds, as well as some advanced variants like differential-linear attacks, very unlikely to succeed for the full cipher.

Attacks based on linear cryptanalysis can sometimes be improved by using nonlinear approximations [Knudsen and Robshaw 1996]. However, with the current state of the art the application of nonlinear approximations seems limited to the first and/or the last round of a linear approximation. This seems to be even more so for ciphers using strongly nonlinear S-boxes, like CURUPIRA-1.

4.2. Truncated differentials

A truncated differential attack similar to that described in [Daemen and Rijmen 1998, section 3.2 and appendix A] against 7 rounds of BKSQ applies to CURUPIRA-1 reduced to the same number of rounds. Since the probability of the truncated differential for right pairs of plaintexts over six rounds is very low ($2^{-48}$, the same as that of a random pairs of plaintexts), no truncated differential faster than exhaustive key search has been found for 8 or more rounds.

4.3. Interpolation attacks

Interpolation attacks [Jakobsen and Knudsen 1997] generally depend on the cipher components (particularly the S-box) having simple algebraic structures that can be combined to give expressions with manageable complexity. The complex algebraic expression of the pseudo-randomly generated S-box in GF($2^8$), in combination with the effect of the diffusion layer, makes these types of attack infeasible for more than a few rounds.

4.4. Weak keys and related-key cryptanalysis

Weak keys are keys that result in a block cipher mapping with detectable weaknesses. Typically, this occurs for ciphers in which the nonlinear operations depend on the actual key value. This is not the case for CURUPIRA-1, where keys are applied using XOR and all nonlinearity is in the fixed S-box.

Related-key attacks generally rely upon slow diffusion and/or symmetry in the key schedule. The CURUPIRA-1 key schedule was itself designed according to the Wide Trail strategy and features fast, nonlinear diffusion of cipher key differences to the round keys. This makes related-key attacks, including advanced variants like that described in [Ferguson et al. 2001, section 4], exceedingly unlikely.

For key lengths that are larger than the length of one round key, it is inevitable that there exist sets of keys that produce identical values for at least one round key. We leave it as an open problem to determine whether classes of keys can be determined that produce identical round key values for two or more consecutive rounds. Even so, it is unclear how such keys could possibly be used successfully in a related-key attack.
4.5. Saturation attacks

Saturation or integral attacks are among the most effective attacks against ciphers of the Wide Trail strategy with a reduced number of rounds. Adapting the basic saturation attacks against reduced-round Rijndael [Daemen and Rijmen 2002, section 10.2] to work against Curupira-1 is straightforward.

The partial sum improvement [Ferguson et al. 2000] is a dynamic programming technique that trades computational effort for storage by reorganizing the intermediate computations. While it still requires the same amount of chosen plaintexts as a basic 6-round attack, the computational effort drops by a factor around $2^{14}$ at the cost of about $2^{16}$ bits of extra storage. There is a very complex extension of the partial sum technique called the herds attack. It is not really clear whether it works against Curupira-1; if so, it would break 7 rounds at the cost of 99.6% of all possible plaintexts, an offline effort of $2^{88}$ encryptions, and a huge amount of storage.

Table 3 summarizes the complexities of saturation attacks against Curupira-1.

<table>
<thead>
<tr>
<th>rounds ($n$)</th>
<th>plaintexts</th>
<th>$n$-round encryptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$2^9$</td>
<td>$2^9$</td>
</tr>
<tr>
<td>5</td>
<td>$2^{11}$</td>
<td>$2^{35}$</td>
</tr>
<tr>
<td>6</td>
<td>$2^{27}$</td>
<td>$2^{37}$</td>
</tr>
<tr>
<td>7</td>
<td>$2^{96} - 2^{87}$</td>
<td>$2^{88}$</td>
</tr>
</tbody>
</table>

4.6. The Gilbert-Minier attack

The Gilbert-Minier attack [Gilbert and Minier 2000] breaks 7 rounds of Curupira-1 with $2^{24}$ guesses for one column of the first round key $\times 2^{12}$ $c$-sets $\times 48$ S-box lookups per entry $\times 2^{54}$ entries/table $\times 2$ tables, or about $2^{110}$ S-box lookups ($2^{104}$ 7-round encryptions), plus $2^{32}$ chosen plaintexts. It is unclear whether the speedup against 7-round Rijndael with 128-bit keys can be modified to work against 7-round Curupira-1 with 96-bit keys; if so, this attack would become marginally faster than exhaustive search.

4.7. A general extension attack

Any $n$-round attack can be extended against $n + 1$ or more rounds for long keys by simply guessing the whole $\kappa^{(n+1)}$ round key and proceeding with the $n$-round attack [Lucks 2000]. Each extra round increases the complexity by a factor $2^{36}$ S-box lookups. Since the complexity of a 6-round saturation attack with the partial sum improvement is $5 \times 2^{40}$ S-box lookups, a 7-round extension costs $5 \times 2^{136}$ S-box lookups, or about $2^{132}$ 7-round encryptions, faster than exhaustive search for 144-bit and 192-bit keys.

4.8. Algebraic and other attacks

There is no consensus regarding the effectiveness of algebraic attacks like the XSL method [Courtois and Pieprzyk 2002]. Because of the heuristic nature of such attacks, theoretical complexity analyses remain controversial, while experimental evidence tends to deny their viability. At the time of this writing no such attack has ever been
demonstrated, not even against simplified versions of AES, whose S-box has a far simpler algebraic structure than the S-box used in CURUPIRA-1. It is pointed out, however, that this very S-box in a different context has already been subjected to third-party scrutiny, with the explicit goal of assessing its resistance against algebraic attacks [Biryukov and DeCannière 2003], and no evidence of weaknesses was found.

The impossible differential attack described in [Biham and Keller 2000] can be adapted to work against CURUPIRA-1 reduced to 5 rounds with $2^{29.5}$ chosen plaintexts and an effort of $2^{31}$ encryptions.

Boomerang attacks [Wagner 1999] benefit from ciphers whose strength is different for encryption and decryption; this is hardly the case for CURUPIRA-1, due to its involutorial structure. Slide attacks [Biryukov and Wagner 1999] are thwarted by the asymmetry introduced in the key schedule by the schedule constants.

Summarizing, no attack faster than exhaustive key search could be found against CURUPIRA-1.

5. Implementation issues

On an 8-bit processor with a limited amount of RAM, the nonlinear substitution layer is performed bytewise, combined with the $\sigma[k]$ transformation. For $\theta$ and $\psi$, it is necessary to implement matrix multiplication.

Multiplication by the polynomial $g(x) = x$ in GF($2^8$) is of central importance. It can be implemented with one shift and one conditional XOR, or more efficiently using a 256-byte table $X$ such that $X[u] \equiv x \cdot u$, if space is available [Daemen and Rijmen 2002, section 4.1.1]. Whatever the choice, we denote by xtimes($u$) the result of $x \cdot u(x)$. Equally important is multiplication by the polynomial $c(x) = x^4 + x^3 + x^2$ in GF($2^8$). We denote by ctimes($u$) the result of $c(x) \cdot u(x)$. It can be implemented as ctimes($u$) $\equiv$ xtimes(xtimes(xtimes(xtimes($u$) $\oplus$ $u$) $\oplus$ $u$)), using 2 XORs and 4 xtimes operations.

Algorithm 2 calculates $D \cdot a$ for a vector $a \in M_1$ at the cost of 6 XORs and 2 xtimes operations.

```
Algorithm 2  Computing $D \cdot a$

Input: $a \in M_1$.
Output: $D \cdot a$.
1: $v \leftarrow$ xtimes($a_0 \oplus a_1 \oplus a_2$), $w \leftarrow$ xtimes($v$)
2: $b_0 \leftarrow a_0 \oplus v$, $b_1 \leftarrow a_1 \oplus w$, $b_2 \leftarrow a_2 \oplus v \oplus w$
3: return $b$
```

Algorithm 3 calculates $E \cdot a$ for a vector $a \in M_1$ (or a column of a matrix in $M_n$) at the cost of 5 XORs and 1 ctimes operation, or 7 XORs and 4 xtimes operations. It also calculates $E^{-1} \cdot a$ at the cost of one extra XOR.

5.1. Efficiency considerations

We now compare the relative efficiency of CURUPIRA-1 and Skipjack. This is quite representative in context of ciphers designed for sensor networks in face of the results of [Law et al. 2006]. Thus, a similar advantage exists with respect to MISTY1 and even more so regarding the AES or the other ciphers considered in that survey.
Algorithm 3  Computing $E \cdot a$ or $E^{-1} \cdot a$

\begin{algorithmic}
  \STATE \textbf{Input}: $a \in M_1$.
  \STATE \textbf{Input}: $e$, a Boolean flag signaling whether $E \cdot a$ (true) or $E^{-1} \cdot a$ (false) is to be computed.
  \STATE $v \leftarrow a_0 \oplus a_1 \oplus a_2$
  \STATE \textbf{if} $e$ \textbf{then}
  \STATE \hspace{1em} $v \leftarrow \texttt{ctimes}(v)$
  \STATE \textbf{else}
  \STATE \hspace{1em} $v \leftarrow \texttt{ctimes}(v) \oplus v$
  \STATE \textbf{end if}
  \STATE $b_0 \leftarrow a_0 \oplus v$, $b_1 \leftarrow a_1 \oplus v$, $b_2 \leftarrow a_2 \oplus v$
  \STATE \textbf{return} $b$
\end{algorithmic}

The encryption cost of $R$-round \textsc{Curupira}-1 is $3R - 1$ XORs, $2(R - 1)/3$ \texttt{times} operations and $R$ S-box lookups per byte, not counting the cost of the key schedule. For instance, 10-round \textsc{Curupira}-1 with a 96-bit key takes 29 XORs, $6 \times \texttt{times}$ operations and 10 S-box lookups per encrypted byte. By comparison, Skipjack takes 48 XORs and 16 F-table lookups per encrypted byte, not counting counter increments and key index updates for the key schedule. Assuming that the cost of any of the basic operations for each cipher is roughly the same, we estimate \textsc{Curupira}-1 to cost $45/64 \approx 70\%$ as much as Skipjack on average. When the

The \textsc{Curupira}-1 key schedule is admittedly more complex than its counterparts. Still, for 96-bit keys, it amounts to less than $1/3$ S-box lookup, $1/3$ of a \texttt{ctimes} operation and 2 XORs per key byte and per round, and it thwarts several kinds of related-key attacks.

We point out that adoption of \textsc{Curupira}-1 also allows for a noticeable reduction in energy consumption and processing time if a standard MAC like CBCMAC, which demands a full encryption per authenticated data block, is replaced by a MAC of the ALRED family like Pelican [Daemen and Rijmen 2005], which requires only $4/R$ encryptions per block plus two full encryptions for the whole message.

6. Conclusion

We have described \textsc{Curupira}-1, a new, special-purpose block cipher targeted at applications with heavily constrained resources, particularly sensor networks and ad-hoc networks involving mobile equipment. \textsc{Curupira}-1 was designed according to the Wide Trail strategy and displays both involutional structure and cyclic key schedule, two important features to overcome the limitations of the target platforms. The resulting cipher is compact and efficient, yet the security analysis indicates that it is about as strong a cipher as can be designed under the assumed operational constraints.

Acknowledgments

We would like to thank Guilherme Almeida Nascimento Fré and Bruno Toshyaki Maeda Trevelim for their useful comments when reviewing the paper.

References


A The name
According to a Brazilian legend, the Curupira is a spirit of nature and protector of the forests. It is a boy with red hair and whose feet are turned backwards, making hunters confused and lost. Thus, when hunters think they are on the right trail to get it, they in fact are going to the wrong direction. The same should work against cryptanalysts :-).
B Design of matrices $D$ and $E$

As discussed in section 2.3, the matrices $D$ and $E$ play fundamental roles in CURUPIRA. This section shows how their design answer to some requirements imposed to the cipher: its involutorial behavior and the key schedule ciclicity.

B1. Matrix $D$: Involutional Behavior

Many modern block ciphers adopt round functions entirely composed by auto-inverse functions, which assures they will be involutional. Also, a straightforward way to implement the diffusion layer $\theta$ required by the Wide Trail Strategy is by means of a multiplication by a an MDS matrix. Thus, the $D$ matrix adopted by the CURUPIRA has two primary requirements: to be MDS and involutional. Furthermore, due to performance issues, it is desirable to have matrix coefficients as simple as possible, leading to a faster multiplication.

This way, starting with a $3 \times 3 \in \text{GF}(2^m)$ in the most general form and applying these design constraints, we have:

$$D = \begin{bmatrix}
  a & b & c \\
  d & e & f \\
  g & h & i
\end{bmatrix}$$

In order to have $D$ involutional, we need that:

$$\begin{bmatrix}
  a & b & c \\
  d & e & f \\
  g & h & i
\end{bmatrix} \cdot \begin{bmatrix}
  a & b & c \\
  d & e & f \\
  g & h & i
\end{bmatrix} = \begin{bmatrix}
  1 & 0 & 0 \\
  0 & 1 & 0 \\
  0 & 0 & 1
\end{bmatrix}.$$

Thus, we obtain the following system of nonlinear equations:

\[
\begin{align*}
(1) \quad a^2 + bd + cg &= 1 \\
(2) \quad ad + de + fg &= 0 \\
(3) \quad ag + dh + gi &= 0 \\
(4) \quad ab + be + ch &= 0 \\
(5) \quad bd + e^2 + fh &= 1 \\
(6) \quad bg + eh + hi &= 0 \\
(7) \quad ac + bf + ci &= 0 \\
(8) \quad dc + ef + fi &= 0 \\
(9) \quad cg + fh + i^2 &= 1
\end{align*}
\]

From (1), (5) and (9), we have $i^2 + a^2 + e^2 = 1$. As $(x+y)^2 = x^2 + y^2$ (keep in mind that the addition operation corresponds to a bitwise XOR), this equation is equivalent to
\[ i + a + e = 1 \]. Replacing this result on the system and regrouping some parameters:

\[
\begin{align*}
(1') & \quad a^2 + bd + cg = 1 \\
(2') & \quad fg = d(a + e) \\
(3') & \quad dh = g(1 + e) \\
(4') & \quad ch = b(a + e) \\
(5') & \quad bd + e^2 + fh = 1 \\
(6') & \quad bg = h(1 + a) \\
(7') & \quad bf = c(1 + e) \\
(8') & \quad dc = f(1 + a) \\
(9') & \quad a + e + i = 1
\end{align*}
\]

In fact, this system is overdefined. For example, multiplying (8') and (4') we have

\[ fb(1 + a)(a + e) = dcch; \]

applying (3') and (7') respectively in the left and right sides of this equation, we can write \((1 + a)(a + e) = cg\). Analogously, the product of (7') and (2') followed by the application of (6') and (8') leads to \((1 + e)(a + e) = fh\). When we add these results, we get \(cg + fh = a^2 + e^2\), which can also be obtained by adding (1') and (5'), which have not been used yet.

The complete solution of this system may be very complex. However, since there are degrees of freedom available, we can simplify the system by making \(b = c, d = f, g = h\). This removes three degrees of freedom from the system, as well as some multiplications, leading to:

\[
D = \begin{bmatrix}
a+1 & a & a \\
e & e+1 & e \\
a+e & a+e & a+e+1
\end{bmatrix} = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1\end{bmatrix} + a \cdot \begin{bmatrix}1 & 1 & 1 \\0 & 0 & 0 \\1 & 1 & 1\end{bmatrix} + e \cdot \begin{bmatrix}0 & 0 & 0 \\0 & 0 & 0 \\1 & 1 & 1\end{bmatrix}
\]

Thus, \(D = I + \alpha A + \beta B\). It is easy to note that any matrix \(D\) having this form is involutory, since \(D^2 = (I + \alpha A + \beta B)^2 = I^2 + A^2 + AB + BA + B^2\) and, by direct inspection, we see that \(A^2 = B^2 = AB = BA = O\), where \(O\) stands for the zero matrix. Moreover, as briefly explained in section 2.3., the simpler achievable coefficients \(\alpha\) and \(\beta\) for which \(D\) is MDS are \(\alpha = 2\) and \(\beta = 4\), leading to:

\[
D = \begin{bmatrix}3 & 2 & 2 \\
4 & 5 & 4 \\
6 & 6 & 7 \end{bmatrix}
\]

B2. Matrix \(E\): Cyclic Schedule

The design of \(E\) comes from the need of an easily invertible matrix. A first idea, which lead to the matrix actually adopted, involves the search for a matrix \(E\) satisfying \(E = I + cC\) and \(E^{-1} = I + dC\), i.e. a matrix matching the identity \(I\) except by a little perturbation given by matrix \(C\) whose inverse takes has a similar structure. The matrix \(C\) and its coefficients \(c\) and \(d\) which satisfy these conditions can be calculated in the following way:

\[
\begin{align*}
E \cdot E^{-1} &= I \\
(I + cC) \cdot (I + dC) &= I \\
I + (c + d)C + cdC^2 &= I
\end{align*}
\]
These equations allow an interesting simplification: the adoption of a idempotent matrix (i.e a matrix $C$ satisfying $C^2 = C$), which leads to the following system of equations:

\[
I + (c + d)C + cdC = I \\
(c + d + cd)C = O
\]

Where $O$ stands for the zero matrix. This way, in order to have $E \neq I$, we must also have that $C$ is non-singular (i.e. $C \neq O$). The matrix whose coefficients are all equal to ‘1’ was chosen because it satisfies these conditions and, as an additional advantage, has a very simple form. Thus, we have:

\[
c + d + cd = 0 \\
d(1 + c) = c \\
d = c/(1 + c)
\]

Consequently, the $c$ parameter has to be chosen in such a way that $d = c/(1 + c)$ exists (i.e. $c \neq 1$) and should be as simple as possible, resulting in a simple way to compute $E^{-1}$. Furthermore, as discussed in section 2.3., we must have $c \neq 0, 1$ in order to $E$ be MDS.

With all those requirements in mind, we used the well known polynomial factorization technique $x^n - 1 = (x - 1)(x^{n-1} + x^{n-2} + \cdots + x + 1)$ in order to obtain a particularly simple form for $d$: by choosing $c$ as the primitive cube root of unity (i.e. $c^3 = 1$) and making $n = 3 \rightarrow c^3 + 1 = (c + 1)(c^2 + c + 1)$, we can write:

\[
c^3 = 1 \Rightarrow c^2 = 1/c \\
c^3 + 1 = 0 \Rightarrow (c + 1)(c^2 + c + 1) = 0 \Rightarrow c^2 + c + 1 = 0 \text{ (since, by design, } c \neq 1) \\
c^2 = c + 1 \Rightarrow 1/(c + 1) = 1/c^2 = c \\
c/(c + 1) = c^2 = c + 1
\]

As desired, this choice of $c$ leads to a particularly simple expression for $E^{-1}$, given by $E^{-1} = I + (c + 1)C$. 

19
C Structure of the Curupira-1 S-box.

Figure 5. Structure of the Curupira-1 S-box.